Deep Learning and Quantum Entanglement: Fundamental Connections with Implications to Network Design

نویسندگان

  • Yoav Levine
  • David Yakira
  • Nadav Cohen
  • Amnon Shashua
چکیده

Formal understanding of the inductive bias behind deep convolutional networks, i.e. the relation between the network’s architectural features and the functions it is able to model, is limited. In this work, we establish a fundamental connection between the fields of quantum physics and deep learning, and use it for obtaining novel theoretical observations regarding the inductive bias of convolutional networks. Specifically, we show a structural equivalence between the function realized by a convolutional arithmetic circuit (ConvAC) and a quantum many-body wave function, which facilitates the use of quantum entanglement measures as quantifiers of a deep network’s expressive ability to model correlations. Furthermore, the construction of a deep ConvAC in terms of a quantum Tensor Network is enabled. This allows us to perform a graph-theoretic analysis of a convolutional network, tying its expressiveness to a min-cut in its underlying graph. We demonstrate a practical outcome in the form of a direct control over the inductive bias via the number of channels (width) of each layer. We empirically validate our findings on standard convolutional networks which involve ReLU activations and max pooling. The description of a deep convolutional network in well-defined graph-theoretic tools and the structural connection to quantum entanglement, are two interdisciplinary bridges that are brought forth by this work.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bridging Many-Body Quantum Physics and Deep Learning via Tensor Networks

The harnessing of modern computational abilities for many-body wave-function representations is naturally placed as a prominent avenue in contemporary condensed matter physics. Specifically, highly expressive computational schemes that are able to efficiently represent the entanglement properties which characterize many-particle quantum systems are of interest. In the seemingly unrelated field ...

متن کامل

Outlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means

One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...

متن کامل

A Poisson Model for Entanglement Optimization in the Quantum Internet

A Poisson model for entanglement optimization in quantum repeater networks is defined in this paper. The nature-inspired multiobjective optimization framework fuses the fundamental concepts of quantum Shannon theory with the theory of evolutionary algorithms. The optimization model aims to maximize the entanglement fidelity and relative entropy of entanglement for all entangled connections of t...

متن کامل

A review of quantum thermodynamics

In this article, we present a brief and elementary review of quantum thermodynamics and its achievements and challenges. This review includes an introduction to some fundamental concepts such as internal energy, heat, work, entropy, entropy production, thermal equilibrium, second law of quantum thermodynamics, relation between thermodynamics and information theory, as well as a discussion of ho...

متن کامل

Quantum algorithm design using dynamic learning

We present a dynamic learning paradigm for " programming " a general quantum computer. A learning algorithm is used to find the control parameters for a coupled qubit system, such that the system at an initial time evolves to a state in which a given measurement corresponds to the desired operation. This can be thought of as a quantum neural network. We first apply the method to a system of two...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1704.01552  شماره 

صفحات  -

تاریخ انتشار 2017